IMO Logic, Combinatorics and Spatial Reasoning Questions

Level: Intermediate Ref No: M17

Puzz Points: $\mathbf{2 3}$

The magician Mij has 140 green balls and 140 red balls. To perform a trick, Mij places all the balls in two bags. In the black bag there are twice as many green balls as red balls. In the black bag there are twice as many green balls as red balls. In the white bag the number of red balls is a multiple of the number of green balls. Neither bag is empty. Determine all the ways in which Mij can place the balls in the two bags in order to perform the trick.

Level: Intermediate Ref No: M36

Puzz Points: 23

I have a large supply of $1 p, 2 p$ and $3 p$ stamps.
(a) Explain why there are at least as many ways to make up ($N+1$) p as there are to make up $N p$, for any positive integer N.
(b) Explain why the number of ways to make up ($N+1$) p is always greater than the number of ways to make up Np.
[We consider $2 p, 1 p, 1 p$ to be the same way of making up $4 p$ as $1 p, 2 p, 1 p$.]
Level: Intermediate Ref No: M37
Puzz Points: 10

Four copies of the polygon shown are fitted together (without gaps or overlaps) to form a rectangle. How many different rectangles are there?

Level: Intermediate Ref No: M51
Puzz Points: 20

For Erewhon's rail network, it is possible to buy only single tickets from any station on the network to any other station on the network. Each ticket shows the name of the station at which a journey starts and, below this, the name of the destination station.

It is proposed to add several new stations to the network. For how many different combinations of the number of existing stations and the number of new stations will exactly 200 new types of ticket be required?

A bug starts in the small triangle T at the top of the diagram. She is allowed to eat through a neighbouring edge to get to a neighbouring small triangle. So at first there is only one possible move (downwards), and only one way to reach this new triangle.
(a) How many triangles, including T and B, must the bug visit if she is to reach the small triangle B at the bottom using a route that is as short as possible?
(b) How many different ways are there for the bug to reach B from T by a route of this shortest possible length?

Level: Intermediate Ref No: M65
Puzz Points: 18

In how many distinct ways can a cubical die be numbered from 1 to 6 so that consecutive numbers are on adjacent faces? Numberings that are obtained from each other by rotation or reflection are considered indistinguishable.

An artist is preparing to draw on a sheet of A4 paper (a rectangle with sides in the ratio $1: \sqrt{2}$). The artist wishes to place a rectangular grid of squares in the centre of the paper, leaving a margin of equal width on all four sides.

Show that such an arrangement is possible for a 1×2 or a 2×3 grid but impossible for any other $g \times(g+1)$ grid.

In the diagram, the number in each cell shows the number of shaded cells with which it shares an edge or a corner. The total of all the numbers for this shading pattern is 16. Any shading pattern obtained by rotating or reflecting this one also has a total of 16 .

Prove that there are exactly two shading patterns (not counting rotations or reflections) which have a total of 17.

2	1	2
3	2	2
1	2	1

Level: Intermediate Ref No: M123
Puzz Points: 23

Every day for the next eleven days I shall eat exactly one sandwich for lunch, either a ham sandwich or a cheese sandwich. However, during that period I shall never eat a ham sandwich on two consecutive days.

In how many ways can I plan my sandwiches for the next eleven days?

Level: Intermediate Ref No: M124
Puzz Points: 10

The edge length, in centimetres, of a solid wooden cube is a whole number greater than two. The outside of the cube is painted blue and the cube is then cut into small cubes whose edge length is 1 cm . The number of small cubes with exactly one blue face is ten times the number of small cubes with exactly two blue faces.

Find the edge length of the original cube.

Level: Intermediate Ref No: M129
Puzz Points: 13

If you have an endless supply of 3×2 rectangular tiles, you can place 100 tiles end to end to tile a 300×2 rectangle. Similarly, you can put k tiles side by side to tile a $3 k \times 2$ rectangle.

Find the values of the integers k and m for which it is possible to a $6 k \times m$ rectangle with 3×2 tiles.

Find the number of different ways that 75 can be expressed as the sum of two or more consecutive positive integers. (Writing the same numbers in a different order does not constitute a 'different way'.)

Two points X and Y lie in a plane. Two straight lines are drawn in the plane, passing through X but not through Y. A further n straight lines are drawn in the plane, passing through Y but not through X. No line is parallel to any other line.

Find, in terms of n, the number of regions into which all $n+2$ lines divide the plane.

